1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
#![no_std]
#![no_main]
#![feature(const_fn)]
#![feature(const_transmute)]
#![allow(dead_code)]
mod dotstar;
mod logger;
mod macros;
mod rtc;
mod usb;
//#[allow(unused)]
//use panic_halt;
use clint::HandlerArray;
use cortex_m::asm::wfi;
use cortex_m_rt::{entry, exception, ExceptionFrame};
use embedded_hal::digital::v2::OutputPin;
use log::{error, info, LevelFilter};
use smart_leds::colors;
use smart_leds_trait::SmartLedsWrite;
use trinket_m0::{
self as hal,
clock::GenericClockController,
gpio::{OpenDrain, Output, Pa10, Pa6, Pa7, PfD},
sercom,
target_device::{interrupt, Interrupt},
time::*,
CorePeripherals, Peripherals,
};
static HANDLERS: HandlerArray = HandlerArray::new();
static mut LED: usize = 0;
#[entry]
fn main() -> ! {
let mut peripherals = Peripherals::take().expect("taking peripherals");
let mut core = CorePeripherals::take().expect("taking core peripherals");
let mut clocks = GenericClockController::with_internal_32kosc(
peripherals.GCLK,
&mut peripherals.PM,
&mut peripherals.SYSCTRL,
&mut peripherals.NVMCTRL,
);
let mut pins = hal::Pins::new(peripherals.PORT);
let uart = hal::uart(
&mut clocks,
115_200.hz(),
peripherals.SERCOM0,
&mut core.NVIC,
&mut peripherals.PM,
pins.d3,
pins.d4,
&mut pins.port,
);
let mut red_led = pins.d13.into_open_drain_output(&mut pins.port);
red_led.set_low().expect("turning off red LED");
unsafe { LED = core::mem::transmute(&red_led) }
// We do the transmute because, while all the underlying data is
// static, we're unable to get a referecence to the UART or LED
// until run-time. Another option would be to use Option in the
// SerialLogger definition, but that requires a check every time
// they might be used.
let uart_wrapped = logger::WriteWrapper::new(uart);
let logger = logger::SerialLogger::new(uart_wrapped, red_led);
// Wow, would I love to not be annotating this type.
let logger_ref: &'static logger::SerialLogger<
sercom::UART0<sercom::Sercom0Pad3<Pa7<PfD>>, sercom::Sercom0Pad2<Pa6<PfD>>, (), ()>,
Pa10<Output<OpenDrain>>,
> = unsafe { core::mem::transmute(&logger) };
unsafe { log::set_logger_racy(logger_ref).expect("couldn't set logger") };
log::set_max_level(LevelFilter::Trace);
info!("setting up dotstar");
let mut dotstar = dotstar::new(
peripherals.SERCOM1,
pins.swdio,
pins.dotstar_di,
pins.dotstar_ci,
&mut pins.port,
&mut peripherals.PM,
&mut clocks,
);
let black = [colors::BLACK];
let blue = [colors::DARK_MAGENTA];
info!("setting up timer");
let mut rtc_handler = rtc::setup(peripherals.RTC, &mut clocks);
info!("setting up usb host");
let (mut usb_host, mut usb_handler) = usb::USBHost::new(
peripherals.USB,
pins.usb_sof,
pins.usb_dm,
pins.usb_dp,
Some(pins.usb_host_enable),
&mut pins.port,
&mut clocks,
&mut peripherals.PM,
);
info!("setting up handlers");
HANDLERS.with_overrides(|hs| {
hs.register(0, &mut rtc_handler);
core.NVIC.enable(Interrupt::RTC);
hs.register(1, &mut usb_handler);
unsafe { core.NVIC.set_priority(Interrupt::USB, 0) };
core.NVIC.enable(Interrupt::USB);
info!("Boot up complete.");
let mut last_tick = 0;
loop {
dotstar
.write(black.iter().cloned())
.expect("turning off dotstar");
let tick = rtc::millis();
if tick >= last_tick + 1_024 {
last_tick = tick;
// info!("{}: tick\r\n", rtc::millis());
}
usb_host.task();
dotstar
.write(blue.iter().cloned())
.expect("turning on dotstar");
wfi();
}
});
unreachable!();
}
#[panic_handler]
fn panic_handler(pi: &core::panic::PanicInfo) -> ! {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
logln_now!("~~~ PANIC ~~~");
logln_now!("{}", pi);
logln_now!("flushing log");
loop {
log::logger().flush();
wfi()
}
}
#[exception]
fn HardFault(ef: &ExceptionFrame) -> ! {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
log::logger().flush();
logln_now!("!!! Hard Fault - ef: {:?} !!!", ef);
logln_now!("flushing log");
loop {
log::logger().flush();
wfi()
}
}
#[exception]
fn DefaultHandler(interrupt: i16) {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
info!("*** Default Handler: {} ***", interrupt);
}
#[exception]
fn NonMaskableInt() {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
info!("+++ NonMaskableInt +++");
}
#[exception]
fn SVCall() {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
info!("+++ SVCall +++");
}
#[exception]
fn PendSV() {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
info!("+++ PendSV +++");
}
#[exception]
fn SysTick() {
let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { core::mem::transmute(LED) };
red_led.set_high().ok();
info!("+++ SysTick +++");
}
#[interrupt]
fn RTC() {
HANDLERS.call(0);
}
#[interrupt]
fn USB() {
HANDLERS.call(1);
}
|