summaryrefslogtreecommitdiffstats
path: root/usb/src/main.rs
blob: 36e4d1ee44434dd5b66bdc19d86f2ba7fba387d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
//! Take USB keyboard reports and echo them over I²C.

#![no_std]
#![no_main]

mod dotstar;
mod logger;
mod macros;
mod rtc;

use atsamd_usb_host::SAMDHost;
use bootkbd::BootKeyboard;
use clint::HandlerArray;
use core::mem;
use core::panic::PanicInfo;
use cortex_m::asm::wfi;
use cortex_m_rt::{entry, exception, ExceptionFrame};
use embedded_hal::{blocking::i2c::Write, digital::v2::OutputPin};
use log::{info, LevelFilter};
use smart_leds::colors;
use smart_leds_trait::SmartLedsWrite;
use trinket_m0::{
    self as hal,
    clock::GenericClockController,
    gpio::{OpenDrain, Output, Pa10, Pa6, Pa7, PfD},
    sercom,
    target_device::{interrupt, Interrupt},
    time::*,
    CorePeripherals, Peripherals,
};
use usb_host::Driver;

// A very unsafe copy of an LED to turn on when things go really, really wrong.
static mut LED: usize = 0;

// I²C address to send keyboard reports to.
const NRF_WIREADDR: u8 = 4;

// Interrupt handler table.
static HANDLERS: HandlerArray = HandlerArray::new();

#[entry]
fn main() -> ! {
    let mut cp = CorePeripherals::take().expect("taking core peripherals");
    let mut dp = Peripherals::take().expect("taking device peripherals");

    let mut clocks = GenericClockController::with_internal_32kosc(
        dp.GCLK,
        &mut dp.PM,
        &mut dp.SYSCTRL,
        &mut dp.NVMCTRL,
    );

    let mut pins = hal::Pins::new(dp.PORT);

    let uart = hal::uart(
        &mut clocks,
        115_200.hz(),
        dp.SERCOM0,
        &mut cp.NVIC,
        &mut dp.PM,
        pins.d3,
        pins.d4,
        &mut pins.port,
    );

    let mut i2c_master = hal::i2c_master(
        &mut clocks,
        400_000.hz(),
        dp.SERCOM2,
        &mut dp.PM,
        pins.d0,
        pins.d2,
        &mut pins.port,
    );

    let mut red_led = pins.d13.into_open_drain_output(&mut pins.port);
    red_led.set_low().expect("turning off red LED");
    unsafe { LED = mem::transmute(&red_led) }

    let mut dotstar = dotstar::new(
        dp.SERCOM1,
        pins.swdio,
        pins.dotstar_di,
        pins.dotstar_ci,
        &mut pins.port,
        &mut dp.PM,
        &mut clocks,
    );
    let black = [colors::BLACK];
    dotstar
        .write(black.iter().cloned())
        .expect("turning off dotstar");

    // We do the transmute because, while all the underlying data is
    // static, we're unable to get a referecence to the UART or LED
    // until run-time. Another option would be to use Option in the
    // SerialLogger definition, but that requires a check every time
    // they might be used.
    let uart_wrapped = logger::WriteWrapper::new(uart);
    let logger = logger::SerialLogger::new(uart_wrapped, red_led);

    // Wow, would I love to not be annotating this type.
    let logger_ref: &'static logger::SerialLogger<
        sercom::UART0<sercom::Sercom0Pad3<Pa7<PfD>>, sercom::Sercom0Pad2<Pa6<PfD>>, (), ()>,
        Pa10<Output<OpenDrain>>,
    > = unsafe { mem::transmute(&logger) };
    unsafe { log::set_logger_racy(logger_ref).expect("couldn't set logger") };
    log::set_max_level(LevelFilter::Trace);

    let mut rtc_handler = rtc::setup(dp.RTC, &mut clocks);

    let (mut usb_host, mut usb_handler) = SAMDHost::new(
        dp.USB,
        pins.usb_sof,
        pins.usb_dm,
        pins.usb_dp,
        Some(pins.usb_host_enable),
        &mut pins.port,
        &mut clocks,
        &mut dp.PM,
        &rtc::millis,
    );

    let mut bootkbd = BootKeyboard::new(|addr, buf| {
        info!("{}: {:?}", addr, buf);
        let hdr: [u8; 2] = [I2CMessageType::Keyboard as u8, buf.len() as u8];
        i2c_master.write(NRF_WIREADDR, &hdr).ok();
        i2c_master.write(NRF_WIREADDR, &buf).ok();
    });
    let mut drivers: [&mut dyn Driver; 1] = [&mut bootkbd];

    HANDLERS.with_overrides(|hs| {
        hs.register(0, &mut rtc_handler);
        unsafe { cp.NVIC.set_priority(Interrupt::USB, 0) };
        cp.NVIC.enable(Interrupt::RTC);

        hs.register(1, &mut usb_handler);
        unsafe { cp.NVIC.set_priority(Interrupt::USB, 1) };
        cp.NVIC.enable(Interrupt::USB);

        info!("Bootstrap complete.");

        loop {
            usb_host.task(&mut drivers[..]);
            wfi()
        }
    });
    unreachable!();
}

#[allow(unused)]
#[repr(u8)]
enum I2CMessageType {
    Debug = 0x00,
    Keyboard = 0x01,
    Invalid = 0xff,
}

#[panic_handler]
fn panic_handler(pi: &PanicInfo) -> ! {
    let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { mem::transmute(LED) };
    red_led.set_high().ok();

    logln_now!("~~~ PANIC ~~~");
    logln_now!("{}", pi);
    logln_now!("flushing log");
    loop {
        log::logger().flush();
        wfi()
    }
}

#[exception]
fn HardFault(ef: &ExceptionFrame) -> ! {
    let red_led: &mut Pa10<Output<OpenDrain>> = unsafe { mem::transmute(LED) };
    red_led.set_high().ok();

    log::logger().flush();
    logln_now!("!!! Hard Fault - ef: {:?} !!!", ef);
    logln_now!("flushing log");
    loop {
        log::logger().flush();
        wfi()
    }
}

#[interrupt]
fn RTC() {
    HANDLERS.call(0);
}

#[interrupt]
fn USB() {
    HANDLERS.call(1);
}