aboutsummaryrefslogtreecommitdiffstats
path: root/src/array.rs
blob: e01fe74605ca6debe69e99e08567bc2ba1198701 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//! Safe wrapper for closure-based interrupt handlers.
//!
//! # Notes
//!
//! The number of entries allowed is defined by Cargo features. The
//! default is 32 as this seems a reasonable comprimise between the
//! size of the array and utility. Each array entry costs two words of
//! space for the closure reference. Thus a full array of 256 entries
//! on a 32-bit architecture costs 2048 bytes of memory, which can be
//! quite a lot on resource constrained devices.
//!
//! One day, when const-generics are stabilized, this will be more
//! elegant.
//!
//! # Examples
//!
//! ``` no_run
//! use clint::HandlerArray;
//! use cortex_m_rt::exception;
//!
//! static HANDLERS: HandlerArray = HandlerArray::new();
//!
//! fn main() {
//!     // NB: This closure has to be created outside of `with_overrides` to
//!     // ensure it lives as long as `with_overrides` scope lasts.
//!     let mut cl = || {
//!         // Your interrupt handling code.
//!     };
//!     HANDLERS.with_overrides(|arr| {
//!         arr.register(0, &mut cl);
//!
//!         loop {
//!             // Your main loop.
//!         }
//!     })
//! }
//!
//! #[exception]
//! fn SysTick() {
//!     HANDLERS.call(0);
//! }
//! ```

use crate::cs::{CriticalSection, Locker};
use crate::Handler;

use core::cell::UnsafeCell;

// Define features for the underlying array size so that we can
// statically allocate it.
// TODO: Use const generics when available.
#[cfg(feature = "isr-8")]
const NR_ISR: usize = 8;
#[cfg(feature = "isr-16")]
const NR_ISR: usize = 16;
#[cfg(feature = "isr-32")]
const NR_ISR: usize = 32;
#[cfg(feature = "isr-64")]
const NR_ISR: usize = 64;
#[cfg(feature = "isr-128")]
const NR_ISR: usize = 128;
#[cfg(feature = "isr-256")]
const NR_ISR: usize = 256;

/// Safely use `Handler`s by enclosing them in an array.
///
/// This type provides a safe wrapper around `Handler` by ensuring
/// that closures are swapped safely using critical sections, and that
/// the lifetime of those handlers is sufficient by using the inner
/// scope of `with_overrides`/`lock_overrides`.
#[derive(Debug)]
pub struct HandlerArray<'a> {
    h: UnsafeCell<[Handler<'a>; NR_ISR]>,
}

impl<'a> HandlerArray<'a> {
    /// Create a new `HandlerArray` filled with no-op handlers.
    pub const fn new() -> Self {
        Self {
            h: UnsafeCell::new([Handler::new(); NR_ISR]),
        }
    }

    /// Register `f` for entry `nr` in this array using the default
    /// critical section locker.
    pub fn register<F>(&self, nr: usize, f: &'a mut F)
    where
        F: FnMut() + Send + 'a,
    {
        self.lock_register(&Locker::new(), nr, f)
    }

    /// Register `f` for entry `nr` in this array using `cs` to create
    /// a critical section for updating the array.
    pub fn lock_register<F, CS>(&self, cs: &CS, nr: usize, f: &'a mut F)
    where
        F: FnMut() + Send + 'a,
        CS: CriticalSection,
    {
        cs.with_lock(|| unsafe { (*self.h.get())[nr].replace(f) });
    }

    /// Call the handler for entry `nr`.
    pub fn call(&self, nr: usize) {
        // Unsafe: there's always a valid handler to call except for
        // when it's being actively replaced. As long as that happens
        // while in a critical section, there's no risk of data races.
        unsafe { (*self.h.get())[nr].call() }
    }

    /// Create a new array for use in `f`'s scope. The existing
    /// handlers can be overridden using `register` or
    /// `lock_register`. When `f` exits, all previous handlers are
    /// restored.
    pub fn with_overrides<'b>(&self, f: impl FnOnce(&HandlerArray<'b>)) {
        self.lock_overrides(&Locker::new(), f)
    }

    /// Same as `with_overrides` but allows you to specify your own
    /// implementation of `CriticalSection` instead of using the
    /// default.
    pub fn lock_overrides<'b, CS>(&self, cs: &CS, f: impl FnOnce(&HandlerArray<'b>))
    where
        CS: CriticalSection,
    {
        // Create a shorter-lived array from `self` that matches the
        // lifetime of `f` so we can make sure `register` is only
        // called with closures that will live as long as `f` does.
        //
        // Unsafe: This requires that we back up and restore the handlers
        // in the array to make sure there's always something alive in
        // whatever the real scope of `array' is.
        let tmp: &HandlerArray<'b> = unsafe { core::mem::transmute(self) };

        // Back up old handlers before entering inner scope so we can
        // restore them on exit.
        let bk = HandlerArray::new();
        unsafe { core::ptr::copy_nonoverlapping(tmp.h.get(), bk.h.get(), 1) }
        f(tmp);

        // Put the old handlers back inside a critical section to avoid
        // data races.
        cs.with_lock(|| unsafe { core::ptr::copy_nonoverlapping(bk.h.get(), tmp.h.get(), 1) });
    }
}

// Unsafe: as long as `register` and `with_overrides` use critical
// sections appropriately, it should be safe to share this between
// threads.
unsafe impl<'a> Sync for HandlerArray<'a> {}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn overrides_unwind() {
        static mut CALLS: usize = 0;
        let mut cl = || unsafe { CALLS += 1 };
        let cl_ref = &mut cl;

        let ht = HandlerArray::new();
        ht.with_overrides(|t| {
            t.register(0, cl_ref);
            ht.call(0);
        });
        unsafe { assert_eq!(CALLS, 1) };
        ht.call(0);
        unsafe { assert_eq!(CALLS, 1) };
    }
}